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ABSTRACT

High tempo detection accuracies have been reported for
the analysis of percussive, constant-tempo, Western mu-
sic audio signals. As a consequence, active research in
the tempo detection domain has been shifted to yet open
tasks like tempo analysis of non-percussive, expressive, or
non-western music. Also, tempo detection is included in
a large range of music-related software. In DJ software,
features like beat-synching or tempo-synchronized sound
effects are widely accepted in the DJ community, and their
users rely on correct tempo hypothesis as their basis. In
this paper, we are evaluating both academic and commer-
cial tempo detection systems on a typical dataset of an ur-
ban club music DJ. Based on this evaluation, we identify
octave errors as a problem that has not yet been solved.
Further, an approach based on non-negative matrix factor-
ization is presented. In its current state it can compete with
the state of the art. It further provides a foundation to tackle
the octave error issue in future research.

1. INTRODUCTION

Tempo detection on percussive music with constant tempo
has been extensively investigated by the music informa-
tion retrieval community throughout the last 30 years, and
high accuracies have been reported. Therefore, researchers
have moved on to related tasks like tempo detection of non-
percussive music, dealing with soft onsets, or tempo/beat
tracking of expressive performances, that are more difficult
to analyze correctly.

Several comparative evaluations of tempo detection al-
gorithms have been published. The results of the ISMIR
tempo induction contest of 2004 are summarized in [9].
In a recent study [19], another 12 algorithms are investi-
gated. In both studies, [11] outperforms the competing al-
gorithms in most of the cases. Another comparative study
is presented in [14], where algorithms of seven groups are
analyzed. It is shown, that the genre has an effect on the
tempo detection performance. Also, algorithms performed
quite differently within different tempo ranges. Further-
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more, some algorithms performed much worse on songs
with ternary meter compared to songs with binary meter,
while in general, percussive music returned higher scores
than non-percussive music.

To motivate our work, a pre-study has been conducted,
in which several algorithms have been evaluated on a urban
club music dataset of 1000 songs size (more details can be
found in Section 3). This study revealed, that the leading
academic tempo-detection algorithms reach up to 70% of
accuracy on urban club music, which is less than expected
(100% on reggae, soul, and rap are reported in [1], [8]
achieved over 95% on constant rock and pop music).

Several metrics are commonly used for tempo detection
evaluation. The fraction of songs, for which the tempo has
been correctly identified, is an intuitive measure. Often, an
additional metric is used [9, 19], in which tempo estimates
that are an integer multiple or divisor of the ground-truth
tempo are also counted as correct estimates. This metric
is motivated by the fact that even human listeners will not
agree on a single tempo (another approach dealing with
this fact is the metric used in [14]). This is surely true for
a large quantity of music from several styles. However, as
reported in [13], there is a high agreement in tempo per-
ception of urban club music amongst listeners, and it can
be assumed that the agreement is even higher amongst ur-
ban club music DJs, since it is their job to mix songs with
the same tempo. However, this assumption remains to be
proven.

From the perspective of the user of a DJ software, it
is absolutely mandatory that the tempo is annotated cor-
rectly. The so called octave errors are unacceptable. Al-
though not really related to the origin of the word octave
in music, they refer to tempo estimates that are different
from the correct tempo by a factor that is a power of two.
Songs need to have the same tempo in order to be mixed
with clean transitions, which is requested by the dancing
audience. Further, many audio effects also rely on correct
tempo hypotheses. And of course, additional processing
like beat tracking, which can be used for automatic mix-
ing, also strongly depends on a correct tempo estimation.

[13] shows that there is a significant effect of music
genre on the most salient tempo, which is consolidated in
[16], where a style detection method is used to improve
tempo detection of ballroom dance songs. Further, [4] lists
several cues that beat-tracking might profit from a style-
specific analysis.

Besides a limited tempo range of about 60 to 140 bpm,



urban club music is percussive, has a constant tempo, and
is composed of repeating drum patterns. Further, the drums
are often sampled and triggered by a sequencer. This re-
duces tempo fluctuations and the variety in sound of mul-
tiple occurrences of a certain drum.

The remainder of this paper is organized as follows. In
Section 2, the proposed system is explained, followed by
the experimental setup and results section (3). The paper
concludes with a summary and outlook in Section 4.

2. APPROACH

As [3] states, ”Perceptually, musical metric structure com-
prises beats and hierarchies. Beats constitute the frame-
work in which successive musical events are perceived”.
The number of beats per minute is used to quantify the
tempo of a musical piece, the beat grid specifies the po-
sition of the beats in a musical piece. The beat grid can
be further subdivided, leading to the tatum grid (or just
tatum), which is the ”lowest regular pulse train that a lis-
tener intuitively infers from the timing of perceived musi-
cal events” [10]. Also, beats can be grouped in bars. In
urban music, a bar mostly consists of four beats. On each
metrical level we will use the term grid to address the po-
sitions of the pulses, and the term period for the time or
frame interval between two successive pulses.

An overview of our approach is shown in Figure 1. From
the spectrogram of the audio data, quantized event bands
are calculated from which the bar period is estimated, that
directly leads to the tempo hypothesis. In order to extract
the quantized event bands, a tatum tracker is applied to an
onset detection function. Next, the spectrogram is sampled
at tatum grid positions and then factorized in event bands.
This is done by means of non-negative matrix factoriza-
tion (NMF [12]), aiming at also isolating different drum
classes (bass drum, snare drum) in separate bands. Cal-
culating NMF on just a subset of spectrogram frames is a
major difference to our approach in [7].

Figure 1. System Overview.

2.1 Onset Detection Function

At the beginning of the analysis, events that are supposed
to contribute to the perception of beats in the musical piece
are determined. As this study focuses on urban music, per-
cussive drum events are investigated, and an onset detec-

tion function that is sensitive to percussive events is cho-
sen. An absolute spectrogram S is calculated from the
44.1 kHz audio input data, using a window-size of 4096
samples size with a hop-size of 512 samples, which corre-
sponds to a spectrogram sample rate of 86.1 Hz.

From S, an onset detection function do is calculated.
The onset components detection function developed in [8]
is used as onset detection function.

2.2 Constant Tempo Segment

In this component, the longest segment with approximately
constant tempo is identified. Analyzing audio data with
several distinct tempi will harm the tatum period detection.

do is convolved with a set of 601 comb grids, which cor-
respond to pulse trains of 20 s length from quarter notes be-
tween 40 bpm and 640 bpm (sixteenth notes at 160 bpm).
Next, each convolved function is cut into segments of 1
s length, and the maximum value inside each segment is
stored in a so called comb response matrix.
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Figure 2. Comb response matrix of a song with multiple
tempi, including the Viterbi path.

An example of a comb response matrix is shown in Fig-
ure 2. The tempo is constant over the first half of the song,
and then changes to another tempo. A strong response for
the grid corresponding to about 380 bpm, which equals a
pulse train of 16th notes at 95 bpm, can be observed in the
first half. The second half is a little slower.

Next, the entries in the comb response matrix are nor-
malized to unit sum for each column. Now, each entry in
the matrix can be seen as likelihood for observing a bpm
class at a given time in a hidden Markov model (HMM).
The Viterbi algorithm [18] is then used to track the most
likely path through the comb response matrix of observa-
tions. From the path, the segment where the tempo stays
roughly constant for the longest time is determined and fur-
ther investigated during tatum period detection.

2.3 Tatum Period Detection

Since do is an onset detection function sensitive to percus-
sive events, it can be used for tatum period detection in the
following way. An accent function go is calculated from
the constant-tempo excerpt of do by keeping only the local
maxima of do while setting all other values to zero, and
convolving the resulting signal with a hann window (11
samples width). The tatum period detection function gt is



calculated: gt = R(R(go)), where R(f) is the autocorrela-
tion of function f. The first 400 values of gt can be seen in
Figure 3. Now, for each local maximum position on the lag
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Figure 3. The tatum period detection function gt. Values
close to 1 indicate a high periodicity with a period of the
corresponding lag axis index. Solid vertical lines denote
local maxima positions, dotted vertical lines denote multi-
ples of the tatum period.

axis as tatum period candidate ci, we determine the small-
est multiple mi of ci that does not correspond to a local
maximum in gt. The tatum period candidate ci with the
largest mi is chosen as tatum period if it is also the local
maximum with the smallest lag. Otherwise, it’s lag value
is divided by 2 until it is smaller than 14, which still allows
tracking sixteenth notes at 180 bpm. This additional step is
required, since not even all the rhythmic events necessarily
fall exactly on the tatum grid. If a certain drum event in a
bar is systematically played early or late, this will lead to
slightly shifted locations of local maxima in gt. This can
also be observed in Figure 3, where the odd local maxima
(solid lines) do not exactly overlap with the tatum period
and its multiples (dotted lines).

2.4 Tatum Grid

After having determined the tatum period, the onset detec-
tion function do is convolved with a comb grid where the
combs are tatum period spaced. This will strengthen ac-
cents in do that lie on the not yet determined tatum grid,
and extenuate all other accents. Now, all dominant local
maxima positions and their pairwise differences are deter-
mined. Only those pairs, for which the difference is ap-
proximately 1, 2, or 3 times the tatum period, are kept.
Then, dynamic programming [2] is used to find the longest
path over the remaining pairs. Using this approach, vari-
ations around a center tempo can be compensated. How-
ever, if a song contains multiple different tempi, the path
will only cover the region that has a beat period that is
approximately a multiple of the tatum period hypothesis.
In [6], dynamic programming is used for beat tracking.
The approaches differ mostly in the fact that we only al-
low local maxima in the underlying detection function as
potential tatum grid anchors.

2.5 Signal Decomposition

The determined tatum grid positions are refined to the lo-
cations of close local maxima in do. This way, also early
and late played events can be incorporated. Then, the spec-
trogram is subsampled at the tatum grid positions, and the

resulting matrix is factorized using NMF [12]. In NMF,
a non-negative matrix V is factorized in matrix factors W
and H , V ≈ WH . Applied to an absolute spectrogram,
it is factorized in a set of components where the character-
istic spectrum of each component is stored in W and the
activation of each component is stored in H . From factor-
ization, we expect to separate different drum classes in dif-
ferent bands, and also separate additional, sources in addi-
tional bands (e.g., separate bass drum and bass even though
they might be overlapping in the spectrogram). Since the
drum tracks in urban club music are often generated using
drum machines, samplers, and sequencers, NMF seems to
be a good choice for decomposition, since drum sounds are
not supposed to vary over time. In [7] we observed better
results in tempo recognition on urban music using NMF
based decomposition compared to a filter bank approach.

NMF is used to factorize the subsampled spectrogram in
24 components. Both bases and activations are randomly
initialized, and 50 iterations of multiplicative update rules
using Kullback-Leibler divergence are performed. These
parameters have not yet been quantitatively optimized in
any way.

NMF has been shown to be able to separate drum events
in, e.g., [15], where NMF is used for drum transcription in
polyphonic music.

Factorizing a spectrogram that is subsampled at tatum
grid positions instead of the full spectrogram reduces the
computational load. A more general advantage of working
on a tatum grid level lies in removing tempo variations.

However there are disadvantages as well. The decom-
position is dependent on the quality of the tatum grid. If
the tatum grid does not contain the drum event onsets, the
drums will not be analyzed at all. Further, in cases where
different drum events fall, for example, on the same beat
but at slightly different times, the spectral frame that is
meant to capture these events might not capture them all.

2.6 Bar Period Detection

The 24 bands obtained by the NMF analysis are again an-
alyzed using a comb grid. Each of the bands is convolved
with a set of comb grid with combs spaced 1, 2, ... , n,
where n corresponds to the largest possible distance be-
tween 4 beats at 65 bpm (see Section 3.5.2), considering
the underlying tatum grid. For each band, from the corre-
sponding n filtered functions, the index of the one with the
largest variance is determined.

From all 24 collected indices, a histogram is calculated
and the most frequent index is chosen as tatum-period-to-
bar-period factor z. The bar period is calculated by mul-
tiplying Z and the tatum period. As final steps, the de-
termined bar period is first divided by four to retrieve the
beat period, since 4/4 is the most common measure in ur-
ban club music. As a final step, the retrieved beat period is
transformed in the bpm range of 65 bpm to 130 bpm (see
Section 3.5.2) by doubling or halving.



3. EVALUATION

In this section we describe the experiments, present the re-
sults, and discuss them.

3.1 Measures

For each evaluation run, we report the relative number of
songs with a tempo hypothesis that differs less then 4%
from the ground-truth tempo (Acc1). To gather further in-
sights on the performance of the evaluated algorithms, we
further report the relative number of songs with two times
or three times the correct tempo (Acc2), and one half or
one third of the correct tempo (Acc3). The fraction of the
remaining songs is denoted Acc4.

3.2 Dataset

2324 songs have been collected from an urban music pro-
motion platform exclusively for DJs. Labels provide songs
to DJs over this kind of platforms at no charge, in return the
DJs will help to promote these songs and make them popu-
lar by playing them in their sets in the club. It is an authen-
tic set that well represents the kind of music, urban club
music DJs are working with. Each of the songs has been
tempo-annotated by an experienced urban music DJ. The
set has been randomly split into a development set (1000
songs, denoted dev ) and a test set (1324 songs, denoted
test).

Dev has been used for the development of the algorithm,
which includes the design of the components and param-
eter setting. The final algorithm has then been evaluated
using test, the results for dev are also reported.

Figure 4 shows a histogram over the observed tempi in
dev.
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Figure 4. Histogram over the ground truth tempi in dev

Although it has been argued, that urban club music in
general is strongly percussive and songs have a constant
tempo, there are exceptions. A few songs in the dataset
do not contain any or only soft percussions. Some are
played by live bands (e.g., The Roots) which leads to vary-
ing tempo. Another source for varying tempo is the use of
sampling in the music, where the samples vary according
to their tempo. And there are even a few songs that are cut
together in a way that the segments are not concatenated
on beat, or even the tempo is different for the segments.
Further, a few songs in the database do not belong to the
urban music genre, like some pop rock songs, that are also
responsible for the upper tempo outliers in Figure 4. We
decided to keep them in the database, since we wanted to
keep it exactly the way it was obtained. However, genre

detection algorithms could be used to identify songs like
that prior to tempo analysis.

3.3 Preprocessing

The data consists of MP3 files of different sample rates
and bit rates. FFmpeg has been used to convert the files to
44.1 kHz mono PCM wav files.

3.4 Algorithms

The approaches from Dixon [5], Ellis [6], and Klapuri [11]
have been selected to represent the academic systems. [6]
returns two tempo hypotheses, from which the stronger one
is selected. [11], and [5] return a beat grid. We calculated
histograms over inter-beat-intervals, and then determined
the mean of all inter-beat-intervals that contributes to the
most frequent inter-beat-interval, from which the tempo in
bpm can be derived. All implementations were obtained
from the authors.

In addition, several commercial DJ systems have been
evaluated. Each one offers ways to parameterize the tempo
analysis algorithm. Cross 1.7.0, denoted Cross 1 , offers
three different tempo ranges for bpm analysis, each one
covering exactly one octave. 75-150 has been selected for
analysis. Scratch Live 2.4.1, denoted SL 2 , offers five dif-
ferent tempo ranges for analysis, each one covering one
octave. 68 - 135 has been selected for analysis. Torq
2.0.3, denoted Torq 3 , offers several genre-specific tempo
ranges. In our experiments, the default settings have been
used, returning bpm values from 60 to 160 bpm. Traktor
Pro 2.6.0, denoted TraA+B 4 , offers 9 different octaves,
from which 68-135 (TraB) has chosen. Further, Traktor
also offers a single range covering more than a octave (60-
200), which will be denoted TraA. Virtual DJ Home 7.0.5,
denoted VDJ, offers an option to allow also bpm values
smaller than 80 bpm, which was activated. It returned
tempi between 60 and 170 bpm. It is worth noticing, that
some of the investigated tools only offer tempo ranges of
exactly one octave, which is a simple but (as can be seen in
the Section 3.5) working approach to reduce octave errors
at least for urban club music, since a large amount of urban
club music is located inside a single octave.

3.5 Results

In this section the results of the conducted experiments are
presented and discussed. All experiments have been per-
formed in Matlab.

3.5.1 Evaluation of the reference systems

Table 1 lists the results returned from the evaluation of the
state of the art.

Directly comparing the results for dev and test, one can
see that the performances are similar, which indicates that
both sets are comparably difficult. This is also true for the

1 http://www.mixvibes.com
2 http://serato.com/scratchlive
3 http://www.torq-dj.com/
4 http://www.native-instruments.com/traktor



Acc1 Acc2 Acc3 Acc4
1 2+3 1/2+1/3 other

Cross 73.2/75.6 23.2/22.9 1.2/0.5 2.4/1.0
SSL 89.4/89.4 8.2/8.5 1.3/1.2 1.1/1.0
Torq 85.6/84.3 2.9/4.4 4.3/3.4 7.2/7.9
VDJ 81.0/78.5 17.0/20.4 1.1/0.9 0.9/0.2
TraA 77.6/79.1 15.3/14.7 5.1/4.5 2.0/1.7
TraB 90.3/90.7 6.1/6.2 1.5/1.4 2.1/1.7
Dixon 25.3/24.5 69.8/70.1 0.0/0.0 4.9/5.4
Ellis 57.5/51.5 4.5/5.4 19.3/26.5 18.7/16.5
Klapuri 68.7/71.7 28.8/27.2 1.8/0.8 0.7/0.3

Table 1. Results for the state of the art algorithms on dev /
test, accuracies in %.

results of the proposed approach, listed in Table 2, which
shows, that even though it has been optimized using dev it
still generalizes well.

With an accuracy of 73.2%, Cross is the worst of the
commercial algorithms. This is mainly caused by the lim-
ited choices of the tempo range, of which no one really fits
our data well. Since all commercial algorithms do a pretty
good job in choosing the correct tempo (as long as octave
errors are still accepted as correct), the performance mainly
depends on the prior choice of the bpm-analyzing octave.
Traktor offers both a large tempo range (60-200, TraA) and
a suitable octave tempo range (68-135, TraB). TraB has an
accuracy of about 12.7% higher than TraA, which shows,
that automatically picking the right tempo octave is still an
open issue.

Dixon often returns twice the correct tempo (69.8%)
and could be simply tuned by halving the returned tempo
estimate. For Ellis, almost 20% of the songs in dev are
neither correct nor do they belong to one of the octave er-
ror classes. The most common cases in ”other” of Ellis
are 4/3 (15%) and 2/3 (4%). In accordance with the men-
tioned MIREX benchmarks, Klapuri is the best performing
academic algorithm.

In the first category (Acc1), the commercial approaches
outperform the academic ones. In this category, the com-
mercial approaches can benefit by the fact that most of the
data is located in a single octave. However, in the fourth
category (other), Klapuri’s algorithm is among the best.

3.5.2 Best Tempo Octave

Based on the data from dev, an experiment has been con-
ducted to determine the best tempo octave settings, assum-
ing that an algorithm performs perfectly but transforms its
results in a specified tempo range of exactly one octave by
doubling or halving the tempo several times. The accuracy
depending on the given tempo range is plotted in Figure 5.
The best performance (92.2%) is achieved for a bpm range
of 65 - 130 bpm. Therefore, in the presented approach, a
tempo hypothesis is transformed in this range by doubling
and halving.

3.5.3 Evaluation of the proposed approach

Table 2 contains the results for the evaluation of the pre-
sented algorithm. For both dev and test, the algorithm re-
turns the highest accuracies retrieved in the whole study.
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Figure 5. Accuracy of a perfect algorithm with octave re-
striction depending on the allowed range.

Acc1 Acc2 Acc3 Acc4
1 2+3 1/2+1/3 other

Own rel. 91.9/92.5 4.9/4.5 2.9/2.7 0.3/0.2
Own abs. 919/1225 49/60 29/36 3/3

Table 2. Results for the presented algorithm on dev/test,
accuracies in %, and absolute number of songs in each cat-
egory.

For both dev and test, only three songs return a tempo
that is not 2n times the correct tempo. The three failing
songs in dev all have a 3/4 measure, but a 4/4 measure is as-
sumed when going from bar period to beat period. Two of
the failing songs in test have no or almost no drum tracks,
the third one has also a measure of only 3 beats length.

The chosen tempo range (that has been determined from
the bpm distribution in dev) induces the assignment to one
of the accuracies Acc1, Acc2 and Acc3. An Acc1 of 92.5%
confirms the choice of the bpm range.

1 2 3 4 6 8 9 12 other
dev 1 188 8 761 6 32 1 3 0
test 0 279 7 992 5 41 0 0 0

Table 3. Distribution of the songs in tatum classes.

Table 3 shows the performance of the tatum period detec-
tion component. The songs are differentiated into tatum
classes, where the class name denotes the ratio of ground
truth beat period and determined tatum period. For all in-
stances, the beat period is an multiple of the tatum period.
The most common multiple is 4, which corresponds to 16th
notes. Assuming 16th notes as tatum for each song, and
therefore estimating the beat period as four times the tatum
period, the tempo could be correctly determined for 76.1%
(dev) and 74.9% (test) of the songs without making any as-
sumptions on a bpm range, which outperforms any of the
academic approaches.

The distribution of the songs in bar classes is listed in
Table 4. For both sets, for most of the songs a bar-length
of 4 beats is returned. Assuming the determined bar period
to be four times the beat period, the tempo could be deter-
mined correctly for 81.5% (dev) and 82.0% (test) respec-
tively, without making any assumptions on a bpm range,
which again outperforms any of the academic approaches.

Both tables reveal the strength of the algorithm, but at
the same time also show limits regarding to octave deter-
mination, as also shown in [7].



1 2 3 4 6 8 other
dev 4 166 3 815 0 12 0
test 0 214 0 1085 1 22 2

Table 4. Distribution of the songs in bar classes.

4. CONCLUSION AND OUTLOOK

In this paper, it is shown that finding the correct octave is
still an issue for even urban club music. This claim is con-
solidated by evaluating several academic and commercial
tempo detection algorithms on a urban club music data set.
The presented algorithm, developed specifically for urban
music, outperforms all the other algorithms evaluated in
this study, estimating the correct tempo for 92.5% of the
test set. The remaining songs are a 2n multiple of the cor-
rect tempo except for 3 out of 1324 songs.

Therefore, the proposed algorithm provides a good ba-
sis for further processing, in which the correct octave has
to be determined. In the current approach, all tempo val-
ues are forced to be in the range of 65 to 130 bpm. Further
experiments will be conducted where the octave is chosen
based on the musical structure. A first investigation on the
tatum-quantized activations indicated, that they still cap-
ture the dominant drum events, contributing to the rhythm
of a song. Therefore, drum pattern analysis, as as per-
formed in, e.g., [17] could be carried out on the activations,
and then be incorporated in tempo detection. Finding the
characteristic drum pattern of a song also offers additional
opportunities like drum pattern similarity or urban music
sub-genre classification.
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